

Tetrahedron Letters 43 (2002) 6197-6199

A novel route to 2,3-disubstituted indoles via palladium-catalyzed three-component coupling of aryl iodide, *o*-alkenylphenyl isocyanide and amine

Kiyotaka Onitsuka, Shinobu Suzuki and Shigetoshi Takahashi*

The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan Received 24 May 2002; revised 19 June 2002; accepted 28 June 2002

Abstract—Three-component coupling reactions of aryl iodide, *o*-alkenylphenyl isocyanide and amine in the presence of palladium catalysts produced 2,3-substituted indoles in moderate yields. © 2002 Elsevier Science Ltd. All rights reserved.

Since an indole nucleus is found in a wide variety of biologically active natural products, considerable attention has been directed toward the synthesis of indole derivatives.1 Although many procedures have been developed for the synthesis of indoles,^{2,3} annulation mediated by palladium catalysts is one of the most powerful tools.⁴ On the other hand, ortho-functionalized aryl isocyanides are fascinating substrates for synthesis of the indole framework due to the high reactivity of isocyanides.^{5,6} Although an efficient route from o-alkenylphenyl isocyanides via radical cyclization has been developed,⁷ there are few reports on approaches to indole synthesis using transition metal mediators.^{5,8} We recently showed the formation of indole derivatives from o-alkenylphenyl isocyanide through the use of a stoichiometric amount of an organopalladium complex.9 We extended this finding to a catalytic process. We report here a novel catalytic synthesis of 2,3-disubstituted indoles by the three-component coupling of aryl iodide, o-alkenylphenyl isocyanide and amine (Scheme 1).

When a mixture of phenyl iodide (1a), *o*-vinylphenyl isocyanide (2a)¹⁰ and diethylamine (3) in a ratio of

1.2:1:18 in THF was stirred at 40°C for 10 h in the presence of 5 mol% of Pd(OAc)₂ and 10 mol% of dppp, 3-(diethylamino)methyl-2-phenylindole (4a) was obtained in 32% yield (Table 1, entry 1).¹¹ An increase in the ratio of 1a:2a led to a slight increase in the yield of 4a (entries 2 and 3). Although the reaction using 6 equiv. of 3 relative to 2a gave 4a in a yield similar to that using 18 equiv. of 3 (entry 4), a further decrease in the amount of 1 decreased the yield of 4a (entry 5). At 60°C, no considerable difference in the yield of 4a was observed (entry 6), while the reaction at 25°C hardly proceeded and 4a was obtained in only 8% yield (entry 7).

Addition of PPh₃ to the reaction mixture instead of dppp remarkably decreased the yield of **4a** (entry 8). This phenomenon is likely due to the lower reactivity of the intramolecular successive insertion of **2a** toward organopalladium complexes with PPh₃ compared to those with dppp.⁸ The length of the alkyl chain of diphosphine also affected the reactivity of palladium catalysts. Thus, the use of dppe or dppb as a ligand decreased the yield of **4a** (entries 9 and 10). Although Pd₂(dba)₃ could be used as a catalyst precursor (entry

Scheme 1.

Keywords: indole; cyclization; isocyanide; palladium catalyst.

* Corresponding author. Tel.: +81-6-6879-8457; fax: +81-6-6879-8459; e-mail: takahashi@sanken.osaka-u.ac.jp

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01316-3

Table	1.	Three-component	coupling	reaction	under	several	conditions

Entry	1a (equiv.) ^a	3a (equiv.) ^a	Pd cat. ^b	Ligand ^c	Temp. (°C)	Time (h)	Yield of $4a^d (\%)^e$
1	1.2	18	Pd(OAc) ₂	dppp	40	10	32
2	2.4	18	$Pd(OAc)_2$	dppp	40	9	36
3	3.6	18	$Pd(OAc)_2$	dppp	40	3.5	42
4	3.6	6	$Pd(OAc)_2$	dppp	40	5.5	43
5	3.6	2.5	$Pd(OAc)_2$	dppp	40	6	21
6	3.6	18	$Pd(OAc)_2$	dppp	60	1	44
7	3.6	18	$Pd(OAc)_2$	dppp	25	3.5	8
8	3.6	18	$Pd(OAc)_2$	PPh ₃	40	33	6
9	3.6	18	$Pd(OAc)_2$	dppe	40	33	18
10	3.6	18	$Pd(OAc)_2$	dppb	40	7	9
11	3.6	18	$Pd_2(dba)_3$	dppp	40	9	36
12	3.6	18	$Pd_2(dba)_3$	bpy	40	26	3

^a Based on 2.

^ь 5 mol%.

^c 10 mol%.

^d Compound 4a isolated was characterized by spectral analyses.

^e Determined by ¹H NMR.

11), 2,2'-bipyridine was not suitable as a ligand (entry 12).

This reaction could be applied to a substituted aryl iodide, as summarized in Table 2. *p*-Methoxyphenyl iodide **1b** and *p*-nitrophenyl iodide **1c** also produced 2,3-substituted indole derivatives **4b** and **4c**, respectively (entries 2 and 3). However, the reaction using phenyl triflate **1d** gave **4a** in 10% yield (entry 4). When *o*-(methoxycarbonylethenyl)phenyl isocyanide (**2b**)⁸ was used instead of **2a**, the corresponding indole derivative was not formed.

Based on our previous results on the stoichiometric reaction of palladium complexes with o-alkenylphenyl isocyanide,⁸ the catalytic cycle that may be responsible for the formation of **4** is illustrated in Scheme 2. Phenylpalladium complex **6** generated by the oxidative addition of aryl iodide to Pd(0) species **5** reacts with **2** to induce the successive insertion of the alkenyl and isocyano groups followed by the 1,3-migration of

Table 2. Three-component coupling reaction^a

hydrogen to give (η^3 -indolylmethyl)palladium complex (7). Nucleophilic attack by diethylamine produces 2,3-disubstituted indoles along with palladium hydride complex **8**, which is converted into Pd(0) species **5** by the reaction with amine.

In summary, we have demonstrated a new route to 2,3-disubstituted indoles through the three-component coupling of aryl iodide, *o*-alkenylphenyl isocyanide and amine using palladium catalysts. Further studies on the scope and limitations of this catalytic reaction are now in progress.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture. We thank The Material Analysis Center, ISIR, Osaka University, for supporting our study with spectral measurements.

Entry	Aryl halide	o-Alkenylphenyl isocyanide	Time (h)	Yield (%) ^b	
1	1a (Y=H, X=I)	2a (R = H)	3.5	42 (4 a)	
2	1b $(Y = OMe, X = I)$	2a (R = H)	21	39° (4b)	
3	1c $(Y = NO_2, X = I)$	2a (R = H)	2	$24^{\rm c}$ (4c)	
4	1d $(Y=H, X=OTf)$	2a (R = H)	27	10 (4a)	
5	1a (Y = H, X = I)	2b ($\mathbf{R} = \mathbf{CO}_2\mathbf{M}\mathbf{e}$)	30	-	

^a 1/2/3 = 3.6/1/18.

^b Determined by ¹H NMR.

^c Isolated yield.

3

Scheme 2.

References

4

- For recent reviews, see: (a) Leonard, J. Nat. Prod. Rep. 1999, 16, 319; (b) Hibino, S.; Choshi, T. Nat. Prod. Rep. 2002, 19, 148.
- For reviews, see: (a) Hegedus, L. S. Angew. Chem., Int. Ed. Engl. 1988, 27, 1113; (b) Sakamoto, T.; Kondo, Y.; Yamanaka, H. Heterocycles 1988, 27, 2225; (c) Gilchrist, T. L. J. Chem. Soc., Perkin Trans 1 1999, 2849; (d) Gribble, G. W. J. Chem. Soc., Perkin Trans 1 2000, 1045.
- For recent leading references, see: (a) Cho, C. S.; Lim, H. K.; Shim, S. C.; Kim, T. J.; Choi, H.-J. Chem. Commun. 1998, 995; (b) Aoki, K.; Peat, A. J.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 3068; (c) Tokuyama, H.; Yamashita, T.; Reding, M. T.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. 1999, 121, 3791; (d) Rodriguez, A. L.; Koradin, C.; Dohle, W.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 2488; (e) Hiroya, K.; Itoh, S.; Ozawa, M.; Kanamori, Y.; Sakamoto, T. Tetrahedron Lett. 2002, 43, 1277.
- For recent leading references, see: (a) Cacchi, S.; Fabrizi, G.; Pace, P. J. Org. Chem. 1998, 63, 1001; (b) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 10251; (c) Takeda, A.; Kamijo S.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 5662; (d) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2001, 66, 412.

- (a) Ito, Y.; Inubushi, Y.; Sugaya, T.; Kobayashi, K.; Saegusa, T. *Bull. Chem. Soc. Jpn.* **1978**, *51*, 1186; (b) Ito, Y.; Kobayashi, K.; Saegusa, T. J. Org. Chem. **1979**, *44*, 2030.
- (a) Ito, Y.; Kobayashi, K.; Seko, N.; Saegusa, T. Bull. Chem. Soc. Jpn. 1984, 57, 73; (b) Orita, A.; Fukudome, M.; Ohe, K.; Murai, S. J. Org. Chem. 1994, 59, 477.
- (a) Fukuyama, T.; Chen, X.; Peng, G. J. Am. Chem. Soc. 1994, 116, 3127; (b) Shinada, T.; Miyachi, M.; Itagaki, Y.; Naoki, H.; Yoshihara, K.; Nakajima, T. Tetrahedron Lett. 1996, 37, 7099; (c) Kobayashi, Y.; Fukuyama, T. J. Heterocycl. Chem. 1998, 35, 1043; (d) Rainier, J. D.; Kennedy, A. R. J. Org. Chem. 2000, 65, 6213; (e) Tokuyama, H.; Watanabe, M.; Hayashi, Y.; Kurokawa, T.; Peng, G.; Fukuyama, T. Synlett 2001, 1403; (f) Tokuyama, H.; Fukuyama, T. Chem. Record 2002, 2, 37.
- (a) Jones, W. D.; Kosar, W. P. J. Am. Chem. Soc. 1986, 108, 5640; (b) Hsu, G. C.; Kosar, W. P.; Jones, W. D. Organometallics 1994, 13, 385.
- Onitsuka, K.; Yamamoto, M.; Suzuki, S.; Takahashi, S. Organometallics 2002, 21, 581.
- Brown, R. F. C.; Hooley, N.; Irvine, F. N. Aust. J. Chem. 1974, 27, 671.
- Kissman, H. M.; Witkop, B. J. Am. Chem. Soc. 1953, 75, 1967.